
Introduction
The electroencephalogram (EEG; see Figure 1) records high temporal resolution human brain activity that is comprised of signal and noise which are intermingled with each other. The signals received 
are brain signals primarily from local field potentials that propagate to the scalp, while the noise received arise from various sources of artifacts of biological and non biological origin. One of the most 
prominent sources of noise that infects the brain activity collected are the ocular artifacts. These artifacts arise from electric potential differences caused by blinks and eye movements, which are 
collected at mostly frontal EEG electrodes. To properly analyze the data, one must remove ocular artifacts from the EEG data, and independent component analysis (ICA) offers an attractive approach 
to doing so. ICA decomposes preprocessed data into maximally independent components (ICs), which are organized into spatial topographies and time-courses (Bell & Sejnowski, 1995). ICs are 
usually classified as artifact or non-artifact via visual inspection of these topographies and time-courses. However, this can be time-consuming and error-prone, and automated approaches provide an 
easier and more principled way of removing artifactual ICs. This is especially true for recently developed “dense-array” EEG systems with 256 electrodes compared to standard electrode caps which 
contain 64 electrodes or less (given that ICA typically provides one component per electrode).

Objectives
The objective of this research was to implement and validate an automated ICA approach by using a MATLAB script that correlated the IC time-courses with electrooculogram channel time-courses (EOG ; attached around the eye). 
The automated approach was validated by comparing the overlap between the automated classifications with classifications of the same ICA decompositions made manually by two humans. We also visualized the effects of 
automated removal on the signals of interest (sensory event-related potentials or ERPs).

Conclusions
• The automated method, ICA_z3 is the best approach in improving ocular artifact identification and removal, but only if it is combined with 

manual inspection. However, ICA_z4 performs well as a fully automated method which may be better for novice EEG analyzers.
• The time-courses from the ERPs showed the degree that the ocular artifacts affects EEG data, and the improvement in signal from our 

automated approach.
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Methods

Figure 2. The figure above depicts the paradigm used for 
the experimental task.

Apparatus: The dense-array EEG 
equipment consists of an electrode cap with 
256 electrodes that goes from the back of the 
neck to the front of the face, between the eyes 
and over the cheekbones, and the ears from 
left to right (see Figure 1). Our sample was 9 
subjects (4 female; age range = 19-30 years). 
Task design: While fitted with the EEG cap, 
subjects completed an experimental task that 
required subjects to categorize visual and 
auditory stimuli. The visual stimuli consisted 
of a straight line or horizontal line, and the 
auditory stimuli consisted of high-pitch or 
low-pitch sound, as shown in Figure 1. 
Preprocessing: Before running the ICA, the 
EEG data was preprocessed by filtering the 
continuous data (high-pass filter 1Hz, line 
noise notch 60Hz) and then segmenting the 
data into trials (-200ms to 1500ms around 
stimulus onset). Next, we identified the noisy 
channels and trials (based on the 

(4) We varied the threshold for artifact identification between z-score=3 
(more liberal artifact identification; ICA_z3), and z-score=4 (more 
conservative, ICA_z4). 
Validation: We adapted the approach of Pontifex et al (2017). We 
recruited two human observers, one intermediate (1-2 years experience) 
and one novice (0 years experience), who identified ocular artifacts 
based on the guidelines in Chaumon et al (2015). We compared the 
human classification results with the automated results, treating the 
ratings provided by an expert observer (4-5 years experience) as the 
“ground truth”.
We also validated the automated approach by visualizing the effect of 
applying it versus not applying it on resulting sensory

absolute signal amplitude) and removed 
them because these can worsen the ICA 
decomposition. 
ICA: The ICA was run using the RunICA
implementation (Infomax) in Fieldtrip 
(Oostenveld, Fries, Maris & Schoffelen, 
2011), to decompose the data into 256 
components. Typically, we would then 
manually go through each component, 
visually identifying components as ocular 
artifacts and removing them. Eye blink 
artifacts are characterized by a frontal 
topography, as shown in Figure 3 (lower 
panel), with patterns of deflections or “dips” 
in the time-course. Figure 3 also shows an 
example eye movement IC (upper panel), 
characterized in its topography by opposite 
polarity around the eyes, and slower 
deflections in its time-course. 
Automated approach: Our approach 
automates the identification of blink and 
eye-movement artifacts based on these 
visual features.
(1) A set of electrooculogram (EOG) 
electrodes placed around the eye to best 
capture the ocular artifact 
(2) We extracted time-courses from these 
EOG channels and computed the Pearson’s 
correlation between them and each IC time-
course, separately for blinks and eye 
movements.
(3) Correlations were standardized by 
converting absolute values to z-scores, to 
counteract variability in correlation strength 
between subjects (see Figure 4).

Figure 3. The figure above depicts topographies and timecourses of a 
representative eye movement (upper) and an blink (right) artifact, taken 
from one subject.

Figure 4. Z-score of correlation between EOG and IC timecourses 
for eye movements (top panel) and blinks (lower panel).

Results

Table 1 compares the performance of the 
two human observers, Observer A and 
Observer B, with the automated methods, 
ICA_z3 and ICA_z4. Both human 
observers and automated methods 
classified the same ICA components as 
artifact or non-artifact, separately for 
blinks and eye movements. 
The overall accuracy defines how well 
each observer and automated method did 
relative to the expert’s ratings (irrespective 
of the “true” identity of the stimulus). We 
also computed sensitivity and specificity 

Table 1. Classification overlap, depicted as the average number of artifact components 
identified, overall classification accuracy, true positive count, true negative count, false 
positive count, false negative count, sensitivity, and specificity. 

and specificity measures, which 
compute accuracies after splitting the 
data into true “artifacts” and true “non-
artifacts” (see Figure 5). Sensitivity is 
how well the true artifacts were 
identified, whereas specificity is how 
well true non-artifacts were identified. 
These signal detection theory estimates 
enable a more detailed insight into data 
properties than overall accuracy alone.
The results reveal that the automated 
methods outperformed the human 
observers in all categories, except for

Figure 5. The figure above shows a bar graph of the 
sensitivity (blue) and the specificity (orange) of every 
observer and automated method in every category: 
blinks, eye movements, and collapsed blinks and eye 
movements.
eye movements, for which Observer A did 
marginally better than ICA_z3, but not ICA_z4. 
However, the automated methods could not 
distinguish reliably between eye blinks and eye 
movements, so collapsing blinks and eye 
movements better represents how well the 
automated methods performed. To summarize:
1) Automated methods out-performed human 
observers in the collapsed data (for both 
sensitivity and specificity)
2) Automated methods are comparable to each 
other (ICA_z3 vs ICA_z4); ICA_z3 has better 
sensitivity, whereas ICA_z4 has better 
specificity.

Figure 6. ERP difference waves (Aud - Vis condition) for auditory channels (upper panel) and visual 
channels (lower panel), across different types of artifact preprocessing (see legend).

Event-related potentials (ERPs) measure brain activity resulting from stimulus presentation. 
From the ERP time course of the visual and auditory ERPs, one can see the difference 
between ICA removal of ocular artifacts and no artifact removal at all (Figure 6). The blue 
and red waves are without ICA. In the auditory channel (upper panel), the non-ICA difference 
waves are contaminated by ocular artifacts around 600-800ms. The visual channel (lower 
panel) is also contaminated, but to a lesser degree because the auditory channel is more 
frontally located. This shows the extent to which ocular artifacts distort EEG and how 
essential it is to remove these artifacts before analyzing the data.

Figure 1. The figure above 
depicts the EEG equipment 
used to collect data.

ERPs. These ERPs were computed by averaging “Visual Only” 
and “Auditory Only” trials across subjects (see Figure 1), resulting 
in Visual ERPs, Auditory ERPs and their difference wave (Visual -
Auditory ERP), across variations in preprocessing: raw (filtering 
only), noisy channels + trials removal only, auto ICA approach 
(ICA_z3 and ICA_z4) and auto ICA z3 + final visual inspection.

Blinks Eye Movements Blinks + Eye Movements

Time (s)

M
ic

ro
vo

lts
 

Time (s)

M
ic

ro
vo

lts
 

Auditory channels 
(frontal)

Visual channels 
(mid/posterior)


